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Abstract— Independent component analysis (ICA) can find 
distinct sources of electroencephalographic (EEG) activity, 
both brain-based and artifactual, and has become a common 
pre-preprocessing step in analysis of EEG data. Distinction 
between brain and non-brain independent components (ICs) 
accounting for, e.g., eye or muscle activities is an important 
step in the analysis. Here we present a fully automated method 
to identify eye-movement related EEG components by 
analyzing the spatial distribution of their scalp projections 
(scalp maps). The EyeCatch method compares each input scalp 
map to a database of eye-related IC scalp maps obtained by 
data-mining over half a million IC scalp maps obtained from 
80,006 EEG datasets associated with a diverse set of EEG 
studies and paradigms. To our knowledge this is the largest 
sample of IC scalp maps that has ever been analyzed. Our 
result show comparable performance to a previous state-of-art 
semi-automated method, CORRMAP, while eliminating the 
need for human intervention.  

I. INTRODUCTION 
Finding EEG sources through the application of 

ICA data decomposition has become a popular 
EEG analysis method [1-6]. An important step in 
analyzing EEG using ICA is separating brain 
source processes from the contributions to the 
scalp data from muscle and eye-movement related 
processes [7]. There are several algorithms 
proposed for this task: ADJUST [8] is a fully 
automatic algorithm that uses a combination of 
spatial and temporal features of independent 
components (ICs) to classify blinks, eye 
movements, and generic discontinuities. The 
method is based on a handful of spatial features 
(e.g., variance differences across groups of 
channels) manually constructed in a trial and error 
manner. When temporal information is not 
available, or when the EEG epochs are too short to 
obtain reliable statistics on temporal features, the 
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performance of the ADJUST algorithm is not 
established.  CORRMAPP [9] is a semi-automated 
method that classifies eye-related ICs solely based 
on the correlation of their spatial projections (scalp 
maps) with one or few templates. Each template is 
initially specified by the user and later refined by 
iterative clustering and averaging of detected eye 
components.  

Here we present EyeCatch, a method that uses a 
large database of exemplar eye scalp maps instead 
of the single user-initiated template in CORRMAP. 
The exemplar database is generated by analysis of 
a very large set of IC scalp maps from multiple 
studies to capture relevant eye component 
topographies while being robust to normal 
variations in subject anatomy, electrode locations, 
ICA decomposition quality, etc.  

II. METHODS 
A. Scalp maps Database Preprocessing 

We first gathered 106,749 single-subject EEG 
data sets from file servers of the UC San Diego 
Swartz Center for Computational Neurocience  
(data collected during the period 2002-2012) and 
selected those with an ICA decomposition (nearly 
all by Extended Infomax [4] or AMICA [10, 11]) 
and unique dipolar IC source models computed 
using EEGLAB [6, 12]. From the selected 80,006 
data sets we extracted 638,512 distinct IC scalp 
maps interpolated on a 67×67 2-D scalp grid using 
topoplot() in EEGLAB. 
B. Eye-related template scalp map dataset 

The eye-related scalp map template dataset was 
created in two stages. First we selected a single 
eye-movement related template scalp map from an 
RSVP study we knew well [13] and calculated its 
correlations with the 265 scalp maps from three 
other laboratory studies. The ten IC scalp maps 
most highly correlated with the template were 
visually judged to be eye-activity related and 
added to the eye-related IC scalp map template 
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database.  Next, we sorted 499 IC scalp maps from 
an Attention-Shift study [14] by their maximum 
correlation to any of the scalp maps in the template 
database and visually selected 25 eye-activity 
related component scalp maps to add to the 
template database.  

Next we calculated the highest absolute 
correlation between all 638,512 distinct IC scalp 
maps (section A) and any of the eye-related scalp 
maps in the template database.  After sorting by 
this value and visual inspection, the scalp maps 
most highly correlated with any template map 
(max(|r|)>0.994) were clustered into 24 clusters 
using Affinity Propagation [15]. Sixteen of these 
clusters mostly contained scalp maps associated 
with a single type of eye-related activity (e.g., 
vertical or horizontal eye movements, or eye 
blinks). The rest were considered to be brain 
source ICs whose maps had some similarity to eye-
activity related maps.  We then visually inspected 
each of the sixteen eye-related scalp map clusters, 
and retained only scalp maps that were more 
similar than a visually appropriate correlation 
threshold to the cluster exemplar (cluster 

thresholds: 0.8<|r|<0.97; median 0.94). After final 
visual adjustment (eliminating 13 ICs) we obtained 
a template database of 3,452 eye-activity related IC 
scalp maps. 

The EyeCatch algorithm then simply calculates 
the maximum absolute correlation between an 
input scalp map and all 3,452 eye-activity related 
template scalp maps in its database. Cross 
validation results showed that this typically was 
more reliable than more complex nearest-neighbor 
distance weighted averaging methods. 

III. RESULTS 
Fig. 1 shows a sample 96 IC scalp maps in the 

EyeCatch template database. Many of these 
represent variations on a single type of template 
(e.g., accounting for EEG artifact produced by 
horizontal eye movements or eye blinks) arising 
from differences in subject anatomy, electrode 
locations, etc. Including this variability provides an 
advantage when using a simple similarity-based 
classification method and can be achieved only by 
processing data from a large sample of subjects 
and recording conditions. 

Fig. 1. A sample 96 template component scalp maps (of 3,452) in the EyeCatch eye-related component template database.  
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We compared the performance of EyeCatch 
with the reported results of the semi-automatic 
CORMAP algorithm. The 4,256 IC scalp maps 
used in the CORRMAP paper [9] plus ratings of 
these maps by eleven experts were kindly provided 
to us by the authors. We applied EyeCatch to these 
scalp maps using a range of decision correlation 
thresholds (between 0.95 and 0.99) and compared 
the results to the average of the [0|1] votes from 
the 11 experts who judged each given IC scalp 
map as either accounting for eye-movement 
activity (e.g., blinks or lateral eye movements) or 
not. Using Matlab (Mathworks, Inc.) 7.85 s were 
required to obtain maximum correlation values for 
the 4,256 input maps (1.8 ms per map). Figure 2 
shows the correlations between the EyeCatch 
output (length 4,256 vector of binary [0|1] values] 
and the expert vote averages  (vector of range [0,1] 
values) for a range of EyeCatch maximum-
correlation decision thresholds.  

 
Fig. 2. Correlations between eye-activity related component scalp map 
judgments by EyeCatch and the average votes (whether each component 
is eye activity related or not) from eleven experts as a function of the 
EyeCatch maximum-correlation decision threshold. 
 
We also calculated the Receiver Operator 

Characteristic (ROC) curve [16] using the majority 
vote of the 11 experts as binary ground truth 
(thereby identifying 125 lateral eye movement or 
blink-related scalp maps) and the maximum 
absolute correlation similarity between each test 
scalp map and the 125 scalp maps in the EyeCatch 
template database as the detection variable. Fig. 3 
displays this ROC curve. The area under the ROC 
curve is 0.993, demonstrating that EyeCatch has 
both high sensitivity and specificity. 

IV. CONCLUSIONS 
As seen in Fig. 2, for a range of decision 

correlation thresholds (from 95.5% to 98.3%) the 
ROC area is above 0.8. This is highly comparable 
to the reported performance of CORRMAP, for 
which mean correlations with expert judgments for 
each study were 0.85-0.91 for lateral eye 
movements and 0.83-0.99 for blinks. However, 
EyeCatch results did not involve the user 
interaction required by CORRMAP.  

Our results show that high-performance eye-
related IC classification can be achieved by using a 
large volume of data and relatively simple 
measures (here, scalp map correlation 
thresholding). This suggests that solving other 
problems in EEG analysis, from muscle-related 
component detection to robust Brain Computer 
Interface design, may also benefit from exploiting 
large databases spanning many EEG studies.  

However, still better performance for detecting 
both eye-activity and other non-brain (‘artifact’) IC 
types might be obtained by jointly considering IC 
scalps and time courses.  For example, saccade and 
blink ICs have strong, fairly predictable time 
domain features; ICs accounting for scalp muscle 
(electromyographic, EMG) activity have 
characteristic spectral profiles, etc. 

A freely available, open-source implementation 
of the EyeCatch algorithm running on Matlab is 
available in the Measure Projection Toolbox 
(MPT), an EEGLAB plug-in [17]. Documentation 
and stand-alone downloads are available at 
http://sccn.ucsd.edu/wiki/EyeCatch. 

 
Fig. 3. Receiver Operator Characteristic (ROC) curve for EyeCatch 
scalp map classification and expert majority voting on the CORRMAP 
paper component scalp map collection (area under the curve = 0.993). 
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